

Journal of Fluorine Chemistry 84 (1997) 79-82

Mild α -fluorination of enantiomerically pure β -ketosulfoxides by F-TEDA-BF₄

Alberto Arnone ^a, Pierfrancesco Bravo ^{b,*}, Massimo Frigerio ^b, Giuliana Salani ^b, Fiorenza Viani ^a, Matteo Zanda ^b, Carmela Zappalà ^b

^a C.N.R. Centro di Studio per le Sostanze Organiche Naturali, via Mancinelli 7, 20131 Milano, Italy
 ^b Dipartimento di Chimica del Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy

Received 20 December 1996; accepted 2 March 1997

Abstract

A wide range of α -sodium derivatives of chiral and enantiomerically pure β -ketosulfoxides have been regioselectively fluorinated with the 'F⁺' fluorinating agent F-TEDA-BF₄ without affecting the sulfinyl stereogenic center. α -Monofluoro- β -ketosulfoxides produced in this reaction can undergo further fluorination providing the corresponding α, α -difluoro derivatives, easily transformed by deacylation into enantiomerically pure (*S*)-difluoromethyl-*p*-tolylsulfoxide. © 1997 Elsevier Science S.A.

Keywords: Fluorination; Chiral sulfoxides; F-TEDA-BF4

1. Introduction

The worldwide market of single enantiomer forms of chiral drugs will grow constantly in future years at the expense of racemic versions [1]. The same is true for several classes of fluorine containing biologically active compounds. Therefore there is a surge of interest in new synthetic routes to chiral and enantiomerically pure (e.p.) selectively fluorinated organic compounds [2]. We have developed new synthetic routes to a number of e.p. fluorinated molecules starting from γ -fluorosubstituted- β -ketosulfoxides, easily obtained in optically pure form by acylation of α -lithiated sulfoxides with α -fluorosubstituted esters [3].

A number of reports dealing with fluorination of activated or inactivated ketones or ketone enolates, enol acetates, trimethylsilyl enolethers and enamines appears in the literature [4]. For sulfoxides it is well known that fluorination by DAST, the most commonly used fluorinating agent, produces the corresponding α -fluoro-sulfides through a Pummerertype reaction [5]. Subsequent oxidation of the α -fluorosulfides to the corresponding sulfoxides followed by sulfinic acid elimination represent the final stages of a well established and useful entry to terminal fluoro-olefines [6]. In this paper we report that F-TEDA-BF₄, a stable and easy to handle fluorinating reagent introduced by Banks [7], belonging to the 'F⁺' delivery class, reacts with preformed α -sodium β -ketosulfoxides providing the corresponding α -fluoro derivatives and preserving the sulfinyl chiral auxiliary [8].

2. Results and discussion

Treatment of the e.p. β -ketosulfoxides **1** [3] with an equimolar amount of NaH in dry THF at 0 °C, followed by addition of one equivalent of F-TEDA-BF₄ at room temperature afforded, in reasonable yields, thermodynamic mixtures of the diastereoisomeric α -monofluorinated β -ketosulfoxides **2** (see Scheme 1 and Table 1).

In most cases small amounts of α , α -difluorinated products **3** formed. These compounds should arise from NaH deprotonation of the monofluorinated products **2**, to provide the corresponding α -sodium derivatives, still reactive toward F-TEDA-BF₄. Traces of difluoromethyl *p*-tolylsulfoxide (*S*)-**4** formed by deacylation of the difluorinated products **3**, probably occurred during work-up and flash chromatography (FC) of the raw fluorination mixtures. We assessed the origin of difluoromethyl *p*-tolylsulfoxide (*S*)-**4** by submitting the monofluoro derivative **2b** to the fluorination protocol (Scheme 2). As expected, (*S*)-**4** was obtained in almost quantitative yield after purification of the crude mixture.

The α -fluorination of **1** by F-TEDA-BF₄ did not take place without preliminary treatment with NaH. In that case only

^{*} Corresponding author. Fax: + 39 2 2399 3080.

^{0022-1139/97/\$17.00 © 1997} Elsevier Science S.A. All rights reserved *PII* S 0022-1139 (97) 00035-3

Scheme 1. F-TEDA-BF₄ promoted α -fluorination of e.p. β -ketosulfoxides: (a) NaH, THF, 0 °C to room temperature; (b) F-TEDA-BF₄, room temperature: **a** $R' \equiv H$, $R \equiv CH_3$; **b** $R' \equiv H$, $R \equiv Ph$; **c** $R' \equiv H$, $r \equiv o$ -pyridyl; **d** $R' \equiv H$, $r \equiv p$ -pyridyl; **e** $R' \equiv CH_3$, $R \equiv Ph$; **f** $R' \equiv H$, $R \equiv CH_2F$; **g** $R' \equiv H$, $R \equiv CHF_2$; **h** $R' \equiv H$, $R \equiv CF_3$; **i** $R' \equiv H$, $R \equiv CF_2Cl$; **j** $R' \equiv H$, $R \equiv CF=CH-Ph$.

Table 1 F-TEDA-BF₄ promoted α -fluorination of e.p. β -ketosulfoxides

Ketone	Reaction time (h)	Yield of 2^a (%)	Yield of 3 (%)	Conversion (%)
1a ^b	48	60	trace	60
$\mathbf{1b}^{\mathrm{b,d}}$	15	23	20	48
1c ^b	1	82	trace	84
1d ^c	1	52	17	73
1e ^{c,e}	0.5	67	/	71
1f ^c	5	23	27	90
1g ^c	12	19	41	70
1h ^c	1.5	27	38	not determined
1i ^c	12	33	32	not determined
1j⁵	2	70	15	87

^aThermodynamic mixture of diastereoisomers.

^bYields and conversion calculated on isolated product.

^cYields and conversion determined by ¹H and ¹⁹F NMR analysis of the crude reaction mixture.

^d5% of difluoromethyl *p*-tolyl-sulfoxide was recovered by FC.

^eTwo non-epimerizable diastereoisomers were obtained in a 63:37 ratio.

oxidation to the corresponding sulfones occurs, though at slow rate. It is worth noting that β -ketosulfoxides bearing an alkyl (1a), an aryl (1b,1e), a heteroaromatic (1c,1d), and even a fluoroalkyl (1f–1i) or fluoroalkenyl group (1j) have been successfully submitted to the reaction, providing inter-

esting e.p. molecules, the latter having more than one selectively fluorinated site.

The enantiomeric purity of the fluorination products was confirmed by reduction of a mixture of C-1 epimers of the monofluoro ketone 2a with DIBAH, and subsequent esterification of the carbinols 5 with both enantiomers of α -phenylpropionic acid. The reduction occurs with excellent diastereoselection and 75% overall yield. The preferential formation of a C-1 epimer of 5, starting from an almost equimolar mixture of 2a, can be explained as follows. The single epimers 2a are reduced at different rates; since epimerization immediately occurs at C-1, in order to establish the thermodynamic equilibrium mixture, one diastereoisomer of 5 is produced in large excess. By NMR analysis of the esters 6 only the two expected C-1 epimers 6 were detected in the mixture, confirming the stereochemical homogeneity of the sulfinyl group. By this method it has also been possible to assign (S) stereochemistry to the C-2 of the carbinols 5, as shown in Scheme 3 (see Section 3 for details) [9].

In summary we have described an unprecedented mild fluorination of the activated C–H moiety of chiral and optically pure β -ketosulfoxides, which does not affect the sulfinyl stereocenter. The reaction applies to a wide range of β -ketosulfoxides. The reactivity and the exploitation of the e.p. α fluorinated sulfoxides 2–4 in the synthesis of fluoro-organic target molecules are currently under investigation.

Scheme 2. α -Fluorination of α -fluoro- α -sulfinylacetophenone **2b**.

Scheme 3. Reduction and esterification of α -fluoro- α -sulfinylacetone 2a. PPA = α -phenylpropionic acid; R = CH(CH₃)Ph.

I

I

3. Experimental details

General. The instrumentation and general experimental and analytical procedures were recently described in detail [10]. Starting β -ketosulfoxides 1 were prepared according to the literature [3].

Fluorination (procedure A). A THF solution (50 ml) of β -ketosulfoxide 1 (1 mmol) was added to an oil-free suspension of NaH (1 mmol) in THF (5.0 ml) under N₂ at 0 °C. The mixture was stirred at 0 °C for 30 min and then at room temperature for 1 h. A solution of F-TEDA-BF₄ (1 mmol) in DMF (2.0 ml) was added. After the appropriate time (see Table 1), the mixture was poured into diethyl ether, washed with aqueous 5% H₂SO₄ (10 ml) and saturated NaHCO₃, dried (Na₂SO₄), filtered and the solvent removed at reduced pressure. Procedure A was used for compounds 1a and 1f-1j.

Fluorination (procedure B). The differences with respect to Procedure A are as follows: F-TEDA-BF₄ (1 equivalent) was added neat (solid). A saturated aqueous ammonium chloride solution was used instead of 5% H₂SO₄. Procedure B was used for compounds 1b-1e.

Purification by flash chromatography (FC) on silica gel, using mixtures of *n*-hexane/ethyl acetate as eluent, afforded the pure fluorinated products 2 (we could not separate the C-1 epimers) and 3. Mixtures of 2 and 3 were obtained by FC from compounds 1d-1i.

Selected ¹H and ¹⁹F NMR data of **2** and **3** are given in Table 2.

Difluoromethyl-p-tolylsulfoxide (S)-4. R_f 0.22 in n-hexane:AcOEt = 9:1; $[\alpha]_{D}^{20}$ + 143.0 (c = 1.0, CHCl₃); ¹H NMR $(CDCl_3) \delta 7.62 \text{ and } 7.42 \text{ (m, 4H, ArH)}, 6.03 \text{ (t, 1H, } J = 55.5 \text{ m})$ Hz, CHF₂), 2.46 (br s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -120.57 (d, J=55.5 Hz); ${}^{13}\overline{\text{C}}$ NMR (CDCl₃) δ 143.8, 133.7, 130.3, 125.6, 121.0 (t, J = 289.4 Hz), 21.6.

3.1. Reduction of 2a with DIBAH

To a 0.1 M solution of compound 2a (1 mmol) in THF at -78 °C, a solution of DIBAH in THF (1 M, 1.1 mmol) was added dropwise. After 30 min, the mixture was diluted with saturated aqueous NH₄Cl, extracted with AcOEt and the organic phases dried over Na₂SO₄. Purification by flash chromatography on silica gel (45:55 mixture *n*-hexane:AcOEt) afforded the pure product 1-fluoro-1[(4-methyl)sulfinyl]propan-2-ol 5 ($R_f 0.35$ in *n*-hexane:AcOEt = 1:1) in 75% yield as a mixture of C-1 epimers in 6:1 ratio.

Major epimer. ¹H NMR (CDCl₃) δ 7.7–7.2 (m, 4H, ArH), 4.83 (dd, J = 46.7 and 8.1 Hz, 1H, CHF), 4.28 (m, 1H, CHOH), 3.75 (br signal, 1H, OH), 2.45 (br s, 3H, ArCH₃), 1.36 (dd, J = 6.3 and 2.4 Hz, 3H, CH₃); ¹⁹F NMR (CDCl₃), $\delta - 193.10 \text{ (ddq, } J = 46.7, 4.5 \text{ and } 2.4 \text{ Hz}\text{).}$

Minor epimer. ¹H NMR (CDCl₃) δ 7.7–7.2 (m, 4H, ArH), 4.68 (dd, J=47.4 and 1.5 Hz, 1H, CHF), 4.28 (m, 1H, CHOH), 3.35 (br signal, 1H, OH), 2.45 (br s, 3H, ArCH₃),

Selected ¹ H	and ¹⁹ F 1	NMR data of produ	icts 2 and 3 in CDCI	a,b 3						
Compound	Signal (8)	$\mathbf{a}(\mathbf{R}\equiv \mathbf{CH}_3)$	b (R≡Ph)	$\mathbf{c}(\mathbf{R} \equiv o\text{-}\mathbf{P}\mathbf{y})$	$\mathbf{d}(\mathbf{R}\!\equiv\!p\text{-}\mathbf{P}y)$	$\mathbf{f}(\mathbf{R} \equiv \mathbf{CH}_2 \mathbf{F})$	$\mathbf{g}(\mathbf{R} \equiv \mathrm{CHF}_2)$	$\mathbf{h}(\mathbf{R} \equiv \mathbf{CF}_3)$	$\mathbf{i}(\mathbf{R} \equiv \mathbf{CF}_2\mathbf{CI})$	$\mathbf{j}(\mathbf{R} \equiv \mathbf{CF} = \mathbf{CHPh})$
2 (two epimers)	H-1	5.53; 5.37	6.12; 6.27	7.27; 7.13	6.07; 6.08	5.69; 5.64	4.92; 5.00	4.95; 5.08	5.06; 5.20	6.16; 6.07
	F-1	-190.52;	-187.15;	-202.99;	-186.25;	-198.82;	-190.17;	-188.02;	-187.32;	-191.77;
		-193.89	-188.91	-203.22	-189.27	-204.49	-205.04	-203.00	-201.32	-193.07
	$^2J_{ m HF}$	51.0; 49.0	48.6; 50.0	51.5; 51.8	52.5; 48.5	49.5; 48.0	47.5; 47.5	47.9; 47.4	48.5; 48.0	49.2; 48.0
3	F_{2} -1	-110.72;	-103.32;	-108.90;	-103.49;	-113.60;	-113.04;	- 112.64;	- 111.69;	-104.49;
		-114.50	-106.68	-111.40	-107.51	-121.41	-120.93	-120.31	-117.85	-108.38
	$^{1}J_{ m HF}$	229.0	238.5	224.5	242.0	225.04	224.0	222.5	216.0	238.5
^a In compou	nd 2e ¹⁹ F	resonates at - 156	.88 ppm.							

Table 2

^aIn compound $2e^{19}$ F resonates at -156.88 ppm. ^bThe remaining ¹H and ¹⁹F NMR signals of compounds 2 and 3 showed the expected chemical shifts and usual patterns.

I

1.39 (dd, J = 6.5 and 1.0 Hz, 3H, CH₃); ¹⁹F NMR (CDCl₃) $\delta - 196.63$ (ddq, J = 47.4, 25.0 and 1.0 Hz).

3.2. Esterification of **5** with (R)- and (S)- α -phenylpropionic acid

To a solution of the alcohol (1 mmol), acid (1.1 mmol) and DCC (1.1 mmol) in dichloromethane (5 ml) at 0 °C, 4-(N,N-dimethylamino)-pyridine (0.1 mmol) was added. After 10 min the solvent was removed under reduced pressure and the crude product was purified by FC (80:20 *n*-hexane:AcOEt) affording the esters **6**.

3.2.1. With (R)-phenylpropionic acid

Major product **6**. R_f 0.35 in *n*-hexane:AcOEt=80:20; $[\alpha]_{20}^{20}+98.67$ (c 0.2, CHCl₃); $[\alpha]_{365}^{20}+472.80$ (c 0.2, CHCl₃); ¹H NMR (CDCl₃) δ 7.60–7.20 (m, 9H, Ar<u>H</u>), 5.26 (ddq, J=14.5, 5.4 and 6.6 Hz, 1H, OC<u>H</u>), 4.89 (dd, J=48.0 and 5.4 Hz, 1H, C<u>H</u>F), 3.73 (q, J=7.1 Hz, 1H, C<u>H</u>Me), 2.44 (br s, 3H, ArC<u>H₃</u>), 1.51 (d, J=7.1 Hz, 3H, C<u>H₃</u>CPh), 1.28 (dd, J=6.6 and 2.0 Hz, 3H, C<u>H₃</u>CO); ¹⁹F NMR (CDCl₃) δ -200.83 (ddq, J=48.0, 14.5 and 2.0 Hz).

Minor product **6**. R_f 0.30 in *n*-hexane:AcOEt=80:20; $[\alpha]_{D}^{20}$ +151.65 (c 0.1, CHCl₃); $[\alpha]_{365}^{20}$ +731.9 (c 0.1, CHCl₃); ¹H NMR (CDCl₃) δ7.65–7.20 (m, 9H, Ar<u>H</u>), 5.54 (ddq, J=26.5, 6.6 and 2.4 Hz, 1H, OC<u>H</u>), 4.67 (dd, J=47.2 and 2.4 Hz, 1H, C<u>H</u>F), 3.84 (q, J=7.2 Hz, 1H, C<u>H</u>Me), 2.44 (br s, 3H, ArC<u>H₃</u>), 1.58 (d, J=7.2 Hz, 3H, C<u>H₃</u>CPh), 1.32 (dd, J=6.6 and 1.2 Hz, 3H, C<u>H₃</u>CO); ¹⁹F NMR (CDCl₃) δ – 193.62 (ddq, J=47.2, 26.5 and 1.2 Hz).

3.2.2. With (S)-phenylpropionic acid

Major product **6**. R_f 0.38 in *n*-hexane:AcOEt = 80:20; $[\alpha]_{D}^{20} + 109.3$ (c 0.9, CHCl₃); $[\alpha]_{365}^{20} + 560.6$ (c 0.9, CHCl₃); ¹H NMR (CDCl₃) δ 7.60–7.20 (m, 9H, Ar<u>H</u>), 5.29 (ddq, J = 13.5, 5.8 and 6.6 Hz, 1H, OC<u>H</u>), 4.73 (dd, J = 48.0 and 5.8 Hz, 1H, C<u>H</u>F), 3.74 (q, J = 7.1 Hz, 1H, C<u>H</u>Me), 2.42 (br s, 3H, ArC<u>H₃</u>), 1.52 (d, J = 7.1 Hz, 3H, C<u>H₃</u>CPh), 1.38 (dd, J = 6.6 and 2.0 Hz, 3H, C<u>H₃</u>CO); ¹⁹F NMR (CDCl₃) δ – 201.63 (ddq, J = 48.0, 13.5 and 2.0 Hz).

Minor product **6**. R_f 0.30 in *n*-hexane:AcOEt=80:20; $[\alpha]_D^{20}$ +53.70 (c 0.4, CHCl₃); $[\alpha]_{365}^{20}$ +276.46 (c 0.4, CHCl₃); ¹H NMR (CDCl₃) δ7.60–7.20 (m, 9H, Ar<u>H</u>), 5.54 (ddq, *J*=27.4, 6.7 and 2.2 Hz, 1H, OC<u>H</u>), 4.59 (dd, *J*=47.3 and 2.2 Hz, 1H, C<u>H</u>F), 3.82 (q, *J*=7.1 Hz, 1H, C<u>H</u>Me), 2.42 (br s, 3H, ArC<u>H₃</u>), 1.57 (d, *J*=7.1 Hz, 3H, C<u>H₃</u>CPh), 1.41 (dd, *J*=6.6 and 1.0 Hz, 3H, C<u>H₃</u>CO); ¹⁹F NMR (CDCl₃) δ – 193.54 (ddq, *J*=47.3, 27.4 and 1.0 Hz).

Acknowledgements

Consiglio Nazionale delle Ricerche is gratefully acknowledged for financial support (Progetto Strategico: Tecnologie Chimiche Innovative). Istituto Superiore di Sanità is gratefully acknowledged by Dr. Carmela Zappalà for a scholarship. Thanks to Air Products and Chemicals, Inc. for a gift of F-TEDA-BF₄.

References

- Guideline for Submitting Supporting Documentation in Drug Applications for the Manufacture of Drug Substances, Office of Drug Evaluation and Research, Food and Drug Administration, Washington, DC, 1987, p. 3; S.C. Stinton, Chem. Eng. News, (28 September 1992) 46.
- [2] P. Bravo, G. Resnati, Tetrahedron: Asymmetry 1 (1990) 661; G. Resnati, Tetrahedron 49 (1993) 9385.
- [3] P. Bravo, E. Piovosi, G. Resnati, Synthesis (1986) 579; A. Arnone, P. Bravo, M. Frigerio, G. Salani, F. Viani, C. Zappalà, G. Cavicchio, M. Crucianelli, Tetrahedron 51 (1995) 8289 and references therein.
- [4] For recent reviews see R.E. Banks, J.C. Tatlow, B.E. Smart, Organofluorine Chemistry: Principles and Commercial Applications, Plenum, New York, 1994; G. Resnati, V.A. Soloshonok (Eds.), Fluoroorganic Chemistry: Synthetic Challenges and Biomedical Rewards; Tetrahedron Symposium-in-Print N. 58, Tetrahedron 52 (1996) 1–330.
- [5] J.R. McCarthy, N.P. Peet, M.E. Le Tourneau, M. Inbasekaran, J. Am. Chem. Soc. 107 (1985) 735. M. Robins, S.F. Wnuk, J. Org. Chem. 55 (1990) 4757; P. Herdewijn, A. De Bruyn, P. Wigerinck, C. Hendrix, L. Kerremans, J. Rozenski, R. Busson, J. Chem. Soc. Perkin Trans. I (1994) 249; L.S. Jeong, V.E. Marquez, Chem. Lett. (1995) 301. For other fluorinations of sulfoxides see M.J. Robins, S.F. Wnuk, K.B. Mullah, N.K. Dalley, C.-S. Yuan, Y. Lee, R.T. Borchardt, J. Org. Chem. 59 (1994) 544; J. Chiba, T. Sugihara, C. Kaneko, Chem. Lett. (1995) 581.
- [6] P. Bey, J.R. McCarthy, I.A. McDonald, Terminal fluoroolefins, in: J.T. Welch (Ed.), Selective Fluorination in Organic and Bioorganic Chemistry, ACS Symp. Ser., Washington, DC, 1991, pp. 105–133; J.R. McCarthy, E.T. Jarvi, D.P. Matthews, M.L. Edwards, N.J. Prakash, T.L. Bowlin, S. Mehdi, P.S. Sunkara, P. Bey, J. Am. Chem. Soc. 111 (1989) 1127.
- [7] R.E. Banks, U.S. Patent, 5 086 178 (1992); R.E. Banks, N.J. Lawrence, A.L. Popplewell, J. Chem. Soc. Chem. Commun. (1994) 343; R.E. Banks, S.N. Mohialdin-Khaffaf, G.S. Lal, I. Sharif, R.G. Syvret, J. Chem. Soc. Chem. Commun. (1992) 595. Produced by Air Products and Chemicals, Inc.; Allentown PA 18195. For leading references on the use of F-TEDA-BF₄ see G.S. Lal, J. Org. Chem. 58 (1993) 2791; M. Zupan, J. Iskra, S. Stavber, J. Org. Chem. 60 (1995) 259; J. Wang, I. Scott, J. Chem. Soc. Chem. Commun. (1995) 2399.
- [8] For leading references on the synthesis and the chemistry of chiral fluorinated sulfoxides see A. Arnone, P. Bravo, A. Donadelli, G. Resnati, Tetrahedron 52 (1996) 131; T. Satoh, K. Takano, Tetrahedron 52 (1996) 2349; V. Reutrakul, T. Kruahong, M. Pohmakotr, Tetrahedron Lett. 35 (1994) 4853. For a review on 1-haloalkyl aryl sulfoxides see T. Satoh, K. Yamakawa, Synlett (1992) 455.
- [9] G. Helmchen, G. Nill, D. Flockerzi, W. Schuhle, M.S.K. Youssef, Angew. Chem. Int. Ed. Engl. 18 (1979) 62; P. Bravo, F. Ganazzoli, G. Resnati, S. De Munari, A. Albinati, J. Chem. Res. (1988) (S) 216, (M) 1701.
- [10] A. Arnone, P. Bravo, S. Capelli, G. Fronza, S.V. Meille, M. Zanda, G. Cavicchio, M. Crucianelli, J. Org. Chem. 61 (1996) 3375.